Version List for DER-CAM Only the most recent versions of DER-CAM are shown and described below. ## **Legend for table:** <u>I&P:</u> Investment and Planning version: determines optimal equipment combination and operation based on *historic* load data, weather, and tariffs <u>O:</u> Operations version: determines optimal multi-day-ahead scheduling for installed equipment and *forecasted* loads, weather and tariffs <u>web:</u> free available academic and non-commercial version with limited features, access at http://der.lbl.gov/der-cam/how-access-der-cam/det: deterministic version, all data is assumed to be known perfectly <u>stoch:</u> stochastic version in which some input data can be specified as scenarios and is used in stochastic programming <u>research:</u> research license which needs a collaboration license agreement General and simple DER-CAM presentation can be found at: http://der.lbl.gov/sites/der.lbl.gov/files/rpt81431.PDF. An overview about DER-CAM and microgrid research can be found at: http://der.lbl.gov/sites/der.lbl.gov/sites/der.lbl.gov/files/microgrid_research_high_res_2013Dec18e.pdf. The video http://www.nrel.gov/esi/seminar_economic_and_environmental_optimization_of_microgrids.html, presented at NREL on 28 March 2013 as part of the Energy Systems Integration Seminar Series, discusses some of our current projects and the results of various case studies. Contact: Dr. Michael Stadler, MStadler@lbl.gov comm: non-exclusive commercial license is available | Version
Number | Characteristic | Public
Release
Date | Accessibility | Uncertainty | Features | Publication | |-------------------------------|----------------|---------------------------|--------------------|-------------|---|--| | 3.9.4 | I&P | 24 April
2012 | research / comm | det | 36 load profiles characterizing a year (week, weekend, peak profiles for every month) optimizes one typical year based on the 36 load profiles 5 load profile types: electricity only, cooling, refrigeration, heating, domestic hot water, and natural gas only only natural gas as energy carrier for combined heat and power (CHP) CHP, electric and heat storage, PV, solar thermal, absorption cooling, heat pumps, basic load shifting, basic efficiency measures, electric vehicles; fuel cell run-time constraint to model SOFC and PEM fuel cells multi-objective (costs and CO₂) policy measures as feed-in tariffs or Self Generation Incentive Program in California allows to force technologies into the solution electricity sales ZNEB and ZCB | http://der.lbl.gov/public ations/electric-storage-californias-commercial-buildings http://der.lbl.gov/sites/der.lbl.gov/files/LBNL-4929E.pdf http://der.lbl.gov/public ations/web-based-economic-environmental-optimization-microgrids | | 3.9.4a | I&P | | research /
comm | det | © based on 3.9.4 from above, but with California Peak Day Pricing modeled | http://der.lbl.gov/sites/der.lbl.gov/files/LBNL-6267E_0.pdf | | 3.9.4.d | I&P | Summer
2014 | research | det | based on 3.9.4, butwith district heating and GIS capabilities | | | WebOpt
version
2.4.0.24 | I&P | June
2013 | web /
academic | det | based on 3.9.4 from above without electric vehicles without policy measures as feed-in tariffs or Self Generation Incentive Program in California without electricity sales no technologies can be forced without ZNEB and ZCB with load profile database for ASHRAE | http://der.lbl.gov/der-cam/how-access-der-cam | | | | | | | Climata zanaa (760 h.:ildinaa in tha LIO) | | |-----------|-----|-----------|-----------|-----|---|---------------------------| | | | | | | Climate zones (762 buildings in the US) | | | | | | | | © automatic multi-objective frontier feature | | | | | | . , | | © Chinese and English version available | | | WebOpt | I&P | January | web / | det | based on WebOpt version 2.4.0.24, but | | | version | | 2014 | academic | | | | | 2.5.1.26 | | | | | © continuous technologies (PV, storage, etc.) | | | | | | | | can be forced into the solution | | | | | | | | © advanced user management that allows | | | | | | | | private web-server space for WebOpt files | | | | | | | | with PV solar radiation database for the | | | | | | | | whole US | | | | | | | | © extended manual with search feature | | | 4.0.0 | I&P | July 2013 | research/ | det | © based on 3.9.4 from above | http://der.lbl.gov/sites/ | | | | | comm | | © with cold storage | der.lbl.gov/files/LBNL- | | | | | | | © with passive measure (window change, | 6305E-Poster.pdf | | | | | | | building shell upgrades) | ☐ Journal papers for | | | | | | | passive measures influencing heating and | passive measures and | | | | | | | cooling loads | multi temperature heat | | | | | | | © multi temperature heat storage (65C and | storage are | | | | | | | 95C) | forthcoming, more | | | | | | | © multi-energy carrier for distributed energy | information via email | | | | | | | resources and heating | to MStadler@lbl.gov | | 4.1.1 | I&P | Dec 2013 | research/ | det | © based on 4.0.0 from above, but | Journal paper in | | 4.1.1 | ΙαΓ | Dec 2013 | comm | uei | © with non-linear efficiency curve modelling | preparation, more | | | | | COITIII | | for CHP systems, linearization with Special | information via email | | | | | | | | | | 3.9.4.m | I&P | Oct | roccorob/ | det | Order-Set and binary variables © based on 3.9.4 from above, but investment | to MStadler@lbl.gov | | 3.9.4.111 | ΙάΡ | Oct. | research/ | aei | | Journal paper in | | | | 2013 | comm | | decision modelling | preparation, more | | | | | | | with multiple year optimization horizon | information via email | | | | | | | which | to MStadler@lbl.gov | | | | | | | optimizes building total energy cost over | | | | | | | | several years (the number of years is a | | | | | | | | set that can be modified by the user) | | | | | | | | has an option that does/does not renew | | | | | | | | investments (same technologies, same | | | | | | | | capacities) in installed technologies | | | | | | | | after the lifetime is reached | | | | | | | | with linear model for battery degradation | | | | | | | | (i.e. capacity loss due to ageing) | | | 3.10.5.m | I&P | February. | research | det | © based on 3.9.4.m from above, but | Journal paper in | | | | 2014 | | | © with PV degradation model | preparation, more | | | | | | | © with variable performance for technologies; | information via email | | | | | | | efficiency, investment costs, etc. can vary | to MStadler@lbl.gov | | | | | | | over time and model technology | | | | | | | | breakthroughs and advancements | | | 1.1.0.w | I&P | April
2012 | research | det | based on 3.9.4 from above, but with 12 typical week profiles to better
model load shifting between week days
and weekend days | | |---|-----|------------------|--------------------|-------|--|---| | 2.0.0.w | I&P | Sept
2013 | research | det | based on 1.1.0.w, but with multiple year optimization horizon which optimizes building total energy cost over several years (the number of years is a set that can be modified by the user) has an option that does/does not renew investments (same technologies, same capacities) in installed technologies after the lifetime is reached with linear model for battery degradation (i.e. capacity loss due to ageing) | | | Operations
DER-CAM
6.0.0 | 0 | 2011 | research /
comm | det | basic operations DER-CAM code for
scheduling pre-determined DER
configurations including the following:
electric storage, flow batteries, solar
thermal, PV, fuel cell, heat and cold
storage, absorption chilling | http://der.lbl.gov/sites/der.lbl.gov/files/lbnl-4497e.pdf http://der.lbl.gov/sites/der.lbl.gov/files/LBNL%20-%2081939.PDF http://der.lbl.gov/sites/der.lbl.gov/files/LBNL-6127E.pdf | | Operations
DER-CAM
6.1.0.ev | 0 | TBD | research /
comm | det | Operations DER-CAM code based on Operations DER-CAM 6.0.0 (see above) with additional modules for charging of EV fleet and determining cost-optimal frequency regulation bid for day-ahead ancillary services market variable time-step 1hr, 15min, 5min | http://der.lbl.gov/sites/der.lbl.gov/files/lbnl-6154e.pdf | | Operations
DER-CAM
stochastic
version
6.1.2.s | Ο | 2011 | research | stoch | added stochastic capabilities based on Operations DER-CAM 6.0.0 enabled choice for individual DG technologies to behave deterministically or stochastically added hourly max output parameter to model outages in DG (applied to fuel cell) stationary storage behaves as deterministic to compensate for uncertainty in DG output | http://der.lbl.gov/public ations/microgrid- reliability-modeling- battery-scheduling- using-stochastic- linear-programming | | 1.1.0.s | I&P | 01 March
2013 | research | stoch | based on 1.1.0.w from above but with 12 typical week profiles to better model load shifting between week days | http://der.lbl.gov/sites/
der.lbl.gov/files/lbnl-
5937e.pdf | | | | | | | and weekend days onew electric vehicle fleet management module onew uncertainty in EV driving pattern onew stochastic capabilities enabled | http://gig.lbl.gov/sites/a | |---------|-----|----------------|----------|-------|--|----------------------------| | 2.0.0.s | I&P | spring
2014 | research | stoch | based on 1.0.0.s consideration of uncertainty for wind and PV islanding and microgrid reliability variable time-step 1hr, 15min, 5min | |